SPECIFICATIONS

SW270WA01 10¹/₂" subwoofer, air-dried paper cone, 4 ohm

The 10%'' transducer SW270WA01 was designed specifically for high performance subwoofer applications where sound quality and low distortion are the priorities. It features the Wavecor Balanced Drive motor technology.

FEATURES

- Balanced Drive motor structure for optimal drive force symmetry resulting in largely reduced even order harmonic distortion
- Extremely large linear stroke, Xmax = ± 11 mm, ensuring low distortion at high output levels
- Very rigid air dried paper cone cone to ensure piston motion at high levels for reduced distortion
- Chassis with extensive venting for lower air flow speed reducing audible distortion
- Vented center pole with dual flares for reduced noise level at large cone excursions
- Heavy-duty black fiber glass voice coil former to reduce mechanical losses resulting in better dynamic performance and low-level details
- Large motor with 2" voice coil diameter for better control and power handling
- Built-in alu field-stabilizing ring for reduced distortion at high levels
- · Low-loss suspension (high Qm) for better reproduction of details and dynamics
- Black plated motor parts for better heat transfer to the surrounding air
- Conex spider for better durability under extreme conditions
- old plated terminals to ensure long-term trouble free connection

NOMINAL SPECIFICATIONS

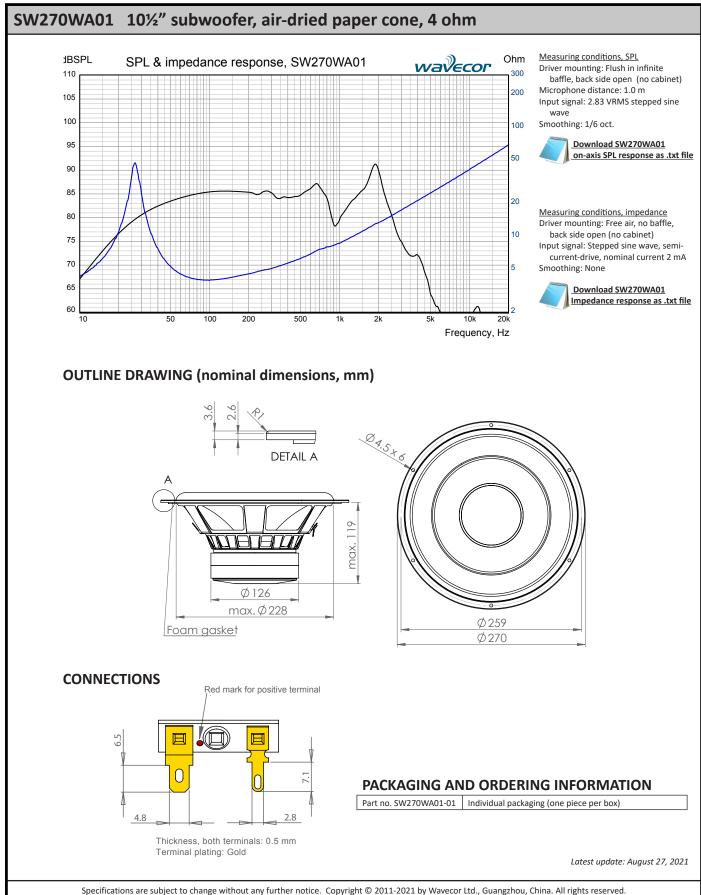
Notes	Parameter	Val	Value	
		Before burn-in	After burn-in	Unit
	Nominal size	10	01/2	[inch.]
	Nominal impedance	4	4	
	Recommended max. upper frequency limit	40	400	
1, 3	Sensitivity, 2.83V/1m (calculated from T/S parameters)	8	88	
2	Power handling, short term, IEC 268-5, no additional filtering			
2	Power handling, long term, IEC 268-5, no additional filtering			
2	Power handling, continuous, IEC 268-5, no additional filtering	150		[W]
	Effective radiating area, Sd	312		[cm ²]
3, 6	Resonance frequency (free air, no baffle), Fs	28		[Hz]
	Moving mass, incl. air (free air, no baffle), Mms	88		[g]
3	Force factor, Bxl	9.7		[N/A]
3, 6	Suspension compliance, C _{ms}	0.37		[mm/N]
3, 6	Equivalent air volume, Vas	51		[lit.]
3, 6	Mechanical resistance, Rms	1.9		[Ns/m]
3, 6	Mechanical Q, Q _{ms}	8.1		[-]
3, 6	Electrical Q, Q _{es}	0.53		[-]
3, 6	Total Q, Q _{ts}	0.49		[-]
4	Voice coil resistance, RDC	3.	3.2	
5	Voice coil inductance, Le (measured at 1 kHz)	1.4		[mH]
	Voice coil inside diameter	5	51	
	Voice coil winding height	2	28	
	Air gap height	6		[mm]
	Theoretical linear motor stroke, Xmax	±1	±11	
	Magnet weight			
	Total unit net weight excl. packaging	3.	.6	[kg]
3, 5	Krm	17		[mohm]
3, 5	Erm	0.61		[-]
3, 5	K _{xm}	10	10.5	
3, 5	Exm	0.1	0.75	

Note 1 Measured in infinite baffle.

Note 2 Tested in free air (no cabinet).

Note 3 Measured using a semi-constant current source, nominal level 2 mA.

Note 4 Measured at 20 deg. C


Note 5 It is generally a rough simplification to assume that loudspeaker transducer voice coils exhibit the characteristics of an inductor. Instead it is a far more accurate approach to use the more advanced model often referred to as the "Wright empirical model", also used in LEAP-4 as the TSL model (www.linearx.com), involving parameters K_{rm}, E_{rm}, K_{xm}, and E_{xm}. This more accurate transducer model is described in a technical paper <u>here at our web site</u>.

Note 6 After burn-in specifications are measured 12 hours after exiting the transducer by a 20 Hz sine wave for 2 hours at level 10 VRMS. The unit is not burned in before shipping.

Specifications are subject to change without any further notice. Copyright © 2011-2021 by Wavecor Ltd., Guangzhou, China. All rights reserved. Wavecor® is a registered trademark of Wavecor Ltd. For more information please visit <u>www.Wavecor.com</u>

SPECIFICATIONS

For more information please visit www.Wavecor.com

Wavecor® is a registered trademark of Wavecor Ltd.